SICKLE CELL DISEASE & IRON OVERLOAD

Elna Saah, M.D.
Assistant Professor
Michigan State University
ANPA 2012

DISCLOSURES

- Formerly Speakers Bureau:
 - Novartis for Exjade®; Deferasirox 2006-2007

GOALS & OBJECTIVES

- Brief review of Iron homeostasis & overload
- Sickle cell hemoglobinopathy and the heightened complication of transfusional hemosiderosis
- Advances in Management: Diagnosis & therapy with emphasis on cardiac complications.

ANNOUNCEMENT:

Professor Theodosia McMoli
June 15th 1938 to June 5th 2012

Professor Theodosia McMoli
June 15th 1938 to June 5th 2012

Professor Theodosia McMoli
June 15th 1938 to June 5th 2012

goals & objectives

- Brief review of Iron homeostasis & overload
- Sickle cell hemoglobinopathy and the heightened complication of transfusional hemosiderosis
- Advances in Management: Diagnosis & therapy with emphasis on cardiac complications.

iron homeostasis & transfusional iron overload (hemosiderosis)
Body Iron Distribution and Storage

- Dietary iron
- Plasma transferrin
- Storage iron
- Iron loss
- Fatty acid
- Adenosine
- Vitamin A
- glucocorticoids
- Estrogens
- Thyroid hormones
- Prolactin
- Renal tubular cell

Basic Causes of Iron Overload
- Acquired iron overload
 - Transfusional
 - Ineffective erythropoiesis
 - Toxic ingestion (very rare)
- Hereditary
 - HFE hemochromatosis
 - Homozygous C282Y mutation in HFE gene
 - Defective regulatory receptor in intestine results in increased absorption of iron
 - Other genetic mutations
- Iron overload can result in iron-related dysfunction of key organs

Iron Loading From Blood Transfusions
- 1 unit of blood contains approximately 200 mg of iron
 - Chronic transfusion-dependent patients have an iron excess of ~0.4 to 0.5 mg/kg/day
- There is no physiologic mechanism to remove excess iron
- Therefore, iron accumulates with repeated blood transfusions
- Signs of iron overload can be seen anywhere between 10 and 20 transfusions

Iron Overload
- Iron overload
- Serum transferrin iron binding capacity exceeded
- NTBI circulates in the plasma
- Excess iron promotes free radical formation
- Insoluble iron complexes are deposited in body tissues
- Cardiac
- Liver
- Pancreas
- Reproductive
- Endocrine

Transfusional Excess Iron Can Build Up in Key Organs

Diseases With High Risk of Iron Overload

- Diseases requiring frequent or repeated transfusions
 - β-Thalassemia (major and intermedia)
 - Sickle cell anemia
 - Myelodysplastic syndromes (MDS)
 - Aplastic anemia
 - Rare chronic anemias
 - Blackfan-Diamond anemia (red cell aplasia)
 - Fanconi anemia (hypoplastic anemia)
 - Others

Sickle Cell Disease

- Sickle cell disease (SCD) is an inherited disorder characterized by chronic hemolytic anemia, organ dysfunction and pain
- In African Americans, SCD occurs in 3 of every 1,000 live births
 - Estimates indicate that SCD affects more than 75,000 African Americans
 - Nigeria: About 100,000 LIVE BIRTHS per year

Some Genotypes of SCD

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Abbreviated Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Homozygous SCD</td>
</tr>
<tr>
<td>B</td>
<td>Sickle cell-hemoglobin C disease</td>
</tr>
<tr>
<td>C</td>
<td>Sickle cell-thalassemia (specify β⁺/β⁻)</td>
</tr>
<tr>
<td>D</td>
<td>Sickle cell-other Hb variant (e.g., E)</td>
</tr>
</tbody>
</table>

Risk of Stroke in SCD

- ~11% of patients with SCD have stroke by age 20
- ~22% had previous stroke or "silent" transient ischemic events
- Patients with previous stroke have increased risk of second stroke
 - Chronic transfusions can decrease incidence of second stroke

Transfusion Therapy in SCD

- Reasons for transfusion
 - Stroke prevention
 - Acute or chronic lung disease (acute chest syndrome, chronic hypoxia, or pulmonary hypertension)
 - Intractable pain
 - Priapism
 - True symptomatic anemia (not due to sickle symptoms)
- Types of transfusions
 - Intermittent simple transfusion "as needed"
 - Chronic simple transfusion
 - Exchange transfusion

Stroke Prevention Trial in Sickle Cell Anemia: STOP Trial Design

After 2 TCDs ≥200 cm/sec, children age 3–16 years with SCD were randomized

Standard care (incl. occasional transfusion) (N = 67)

Transfusion to HbS <30% (N = 63)

Endpoint: Incidence of stroke (cerebral infarction or intracranial hemorrhage)
STOP Trial Results

NHLBI Recommendation for SCD Stroke Management

STOP 2 Trial Design

Discontinued Transfusion Program (N = 41)
Continued Transfusion Program (N = 38)

Optimizing Primary Stroke Prevention in Children With Sickle Cell Anemia: STOP 2 Trial Design

Endpoint: stroke or reversion to abnormal TCD

Summary of STOP and STOP 2 Trials

STOP 1
- Transfusion therapy reduced risk of first clinical stroke >90% (P < 0.001) versus standard care in children with abnormal TCD

STOP 2
- Continuing transfusion therapy reduced risk of stroke and reversion to high-risk status by ~50% (P < 0.001)

STOP Trial Results

Number of Patients

STOP Study halted prematurely in 1997

NHLBI = National Institutes of Health; SCD = sickle cell disease; STOP = Stroke Prevention Trial in Sickle Cell Anemia; TCD = Transcranial Doppler

NHLBI Recommendations for SCD Stroke Management

- TCD screening for all children with SCD
- Transfusion therapy for children with abnormal TCD
- Continuing transfusions indefinitely in high-risk children
- Management of iron overload for children on chronic transfusions

Summary

- Transfusions are critical in treating or reducing certain disease complications such as acute chest syndrome and stroke
- Many patients with SCD are chronically or intermittently transfused
- STOP trial results confirm benefits of transfusion therapy in stroke reduction
- Chronically or intermittently transfused patients with SCD are at high risk for iron overload

NHLBI = National Heart, Lung, and Blood Institute; SCD = sickle cell disease; TCD = Transcranial Doppler

CLINICAL MANIFESTATIONS OF IRON OVERLOAD

Transfusional Excess Iron Can Build Up in Key Organs

Liver

Physiology of Iron Overload

Outcome = Tissue Iron x Tissue Sensitivity x Time

- Iron Input
- Total Iron (LIC)
- Tissue Iron
- Iron Accumulation in Organs
- Organ Dysfunction

LIVER DISEASE

- Primary Iron storage organ. Involvement is early & frequent: 38-97%
- Asymptomatic
- Liver enlargement
- Elevated Serum Aminotransferase levels
- Hepatic Fibrosis: 10-25%
- Cirrhosis: 4-6%
- Contributing factors: HFE, Alcohol, HCV

CARDIOTOXICITY

- Of all the organs, the myocardium is most sensitive to iron toxicity. Major mortality
- From Asymptomatic to sudden death
- Left Ventricular diastolic Dysfunction
- Cardiomyopathy: Both Dilated & Restrictive. Impaired Systolic Function and Heart Failure
- “Malignant” Arrythmias: Sick sinus synrd. & Atrial FIB

ENDOCRINE DISEASE: DIABETES & HYPOGONADISM

- DM: Decrease Insulin secretion due to accumulation of Iron in Beta Islet cells of Pancreas &/or Increased Insulin Resistance
- Hypogonadism: Hypothalamic, Pituitary and gonadal dysfunction.
- Thyroid dysfunction: Less common. Hypo/Hyper Thyroidism
JOINT & SKIN

- Arthropathy: 25-50% of cases. A predilection for the 2nd & 3rd Metacarpophalaneal joints (MCP’s). Other joints usually symmetrical
- Osteoporosis
- Skin: Hyper pigmentation: Results from melanin &/or Iron deposition. Skin appears brownish "bronze"

MANAGEMENT OF TRANSFUSIONAL IRON OVERLOAD
DIAGNOSIS, PREVENTION & TREATMENT

ASSESSMENT OF IRON LOAD

- Serum Ferritin (SF)
- SQUID: Super Conducting Quantum Interference Device. Few & largely replaced by MRI
- MRI assessment of Liver iron(R2). Based on measurements of proton transverse relaxation rates
- MRI assessment of Cardiac iron (T2*)
- Liver Biopsy: ? Still Gold Standard

Factors for Consideration

- When selecting a measure for iron levels, consider the following
 - Clinical value
 - Availability
 - Cost
 - Accuracy
 - Invasiveness
 - Patient concerns

Iron Overload: Relationship Between Hepatic Iron and Transfusion Duration in Patients With SCD

Serum Ferritin as a Measure of Iron Loading

- Reflects
 - Iron stores
 - Inflammation
 - Recent chelation
 - Ascorbate status

Hepatic Iron Stores and Serum Ferritin

- Sickle cell anemia (n = 50)
- Thalassemia major (n = 74)
Serum Ferritin: Advantages

- Inexpensive and widely available
- Noninvasive
- Grossly proportional to total body iron load in large population studies
 - Correlations ~0.7 with biopsy or surrogates
- The direction and magnitude of change in serum ferritin are reasonable markers of the direction and magnitude of change in iron burden

Serum Ferritin: Disadvantages

- Is a poor measure of total iron burden in individual patients
- Increased with inflammation
- Decreased if scorbutic
- Effect of chelation not linear
- Different chelators may affect serum ferritin differently

LIC Predicts Total Body Iron

\[
\text{Body iron (mg/kg)} = 10.6 \times \text{LIC (mg/g dry weight)}
\]

Liver Biopsy

- Liver biopsy
 - Distribution artifact
 - Risks of procedure
 - Patient acceptance
 - Adequate sample size
 - >1 mg dry weight
 - LIC >7 mg/g dry weight is generally considered an indicator of iron overload

Histology of Iron Overload

- Excess iron is deposited in tissues (hemosiderosis)

MRI R2

- Can accurately estimate iron in liver
- Noninvasive and MRI instruments are widely available
- Validated by preliminary clinical research on MRI machines from several manufacturers at several institutions, in patients with transfusional iron overload
- MRI machine must be calibrated to measure iron
Transfusional Excess Iron Can Build Up in Key Organs

MRI of an iron-overloaded human liver

1 Bright areas indicate high iron concentrations, while the dark areas indicate regions of lower iron concentrations.
MRI = magnetic resonance imaging

HEPATIC IRON & SEVERITY

<table>
<thead>
<tr>
<th>HEPATIC IRON (mg/g Dry Weight)</th>
<th>SEVERITY</th>
<th>CLINICAL IMPLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td><1.2</td>
<td>Normal</td>
<td>None</td>
</tr>
<tr>
<td>3-7</td>
<td>Mild</td>
<td>Optimal level</td>
</tr>
<tr>
<td>7-15</td>
<td>Moderate</td>
<td>Increased Risk of Complications</td>
</tr>
<tr>
<td>>15</td>
<td>Severe</td>
<td>Increased Risk of Cardiac disease & Sudden death</td>
</tr>
</tbody>
</table>

Ho et al: Australian Guidelines for the assessment of Iron overload & iron chelation 2011

ASSESSMENT OF CARDIAC RISK BY MRI

<table>
<thead>
<tr>
<th>Cardiac T2* (ms)</th>
<th>Cardiac Iron Load & Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 20</td>
<td>Normal</td>
</tr>
<tr>
<td>Cardiac T2* (ms)</td>
<td>Moderate to severe</td>
</tr>
<tr>
<td>10</td>
<td>Severe</td>
</tr>
</tbody>
</table>

Ho et al: Australian Guidelines for the assessment of Iron overload & iron chelation 2011

CHELATORS

- DEFEROXAMINE: Available in the 60’s. Widely used after 1975. Parenteral SQ/IV
- Novel Iron chelator, FBS 0701 just completed Phase 2 trials: Ellis Neufeld et al; Blood 2012 119 3263-3268

Search for the “holy grail” of chelators continues: Comparison

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>IDEAL CHELATOR</th>
<th>DEFEROXAMINE</th>
<th>DEFERASIROX</th>
<th>DEFERIPRONE</th>
<th>DEFERASIPROX</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROUTE</td>
<td>ORAL SQ/IV</td>
<td>ORAL</td>
<td>ORAL</td>
<td>ORAL</td>
<td>ORAL</td>
</tr>
<tr>
<td>HALF-LIFE</td>
<td>Long enough to give constant protection from labile Fe</td>
<td>Short (min)</td>
<td>Moderate (<2hrs)</td>
<td>Long (8-16 hr) Dose QD</td>
<td></td>
</tr>
<tr>
<td>SIDE EFFECTS</td>
<td>None</td>
<td>Pain/Local inflammation</td>
<td>Agranulocytosis</td>
<td>GI, Rash</td>
<td>Increase Cr.</td>
</tr>
<tr>
<td>ABILITY TO CHELATE</td>
<td>High</td>
<td>? Lower than oral agents</td>
<td>High</td>
<td>Not shown to be great</td>
<td></td>
</tr>
<tr>
<td>CARDIAC & TISSUE Fe</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ellis Neufeld et al; Blood 2012 119 3263-3268
Summary & Recommendations

- Desferoxamine has been available for decades and has the longest cumulative evidence. Still recommended for severe cardiac overload IV continuous.
- Combinations of DFO & Deferiprone are widely used for moderate cardiac toxicity.
- Other agents as ACE inhibitors & Beta blockers have not been adequately studied in this setting and do not replace chelation.
- Advances in imaging (MRI) allow titration of Rx to organ Iron load.

Iron Balance

- Considerations:
 - Transfusional burden
 - Accuracy of patient reporting
 - Patient-specific differences in chelation efficacy

ON A PERSONAL NOTE & CALL TO ACTION

THANK YOU
QUESTIONS & ANSWERS